

INFORMATION TECHNOLOGY

 Xerox Corporation Palo Alto Research Center

Improving Software Efficiency Through Reusable Components

Software for large, computer-driven systems was generally proprietary and highly customized
in the mid-1990s. Typically, about 80 percent of each application’s code was original, which
meant that development and maintenance costs were high. Buyers wanted more from these
programs; they wanted software that could be used in more than one application and that was
easier for programmers to work with, features that would improve the programmers’
productivity. Researchers at the Xerox Palo Alto Research Center (PARC) thought they could
solve the problem by making software more modular, which would improve compatibility
among software applications.

In 1994, PARC applied to the Advanced Technology Program’s (ATP) “Component-Based
Software” focused program. With ATP’s cost-shared award, the two-year project began in
January 1995. As researchers developed prototype applications, they began to extract parts of
programming code reflecting concerns (problems that a computer program tries to solve) that
cut across the entire system and to make these concerns, or aspects, separate modules.
Aspects affect a programmer’s choices throughout a software application, such as logging
changes to data entries. This approach differed radically from earlier attempts at modularity.
The PARC researchers called their approach aspect-oriented programming (AOP) and later
developed products that incorporated its principles. At the same time, Java, a new
programming language used to write Internet-based material, was gaining widespread
popularity. AOP complemented Java because both technologies made software more
modular.

When ATP funding ended in December 1997, PARC began working with the Defense
Advanced Research Projects Agency to further develop AOP. PARC created a general-
purpose programming language, AspectJ, which it patented. In 2002, the company made this
technology freely available by transferring it to eclipse.org, an open-source project sponsored
by IBM.

By 2004, AOP was well recognized in the computer industry and was taught at more than a
dozen universities in North America and the United Kingdom. Eight patents emerged from the
ATP-funded project. More than 3,250 articles or books have been written about AOP. In 2003,
JavaWorld named AspectJ best new product or process using Java, and IBM uses AspectJ in
developing new software products. The outlook for the technology is very strong.

COMPOSITE PERFORMANCE SCORE
 (based on a four star rating)
 * * * *

Research and data for Status Report 94-06-0036 were collected during October – December 2004.

Need for Reusability Drives Search for More
Efficient Programming

In computer programming, high-level code enables
programmers to use single statements to represent

large chunks of binary digital code. In the mid-1990s,
programmers were writing this kind of code with object-
oriented programming. Object-oriented programming
defined a computer program as a collection of individual
units, or objects, as opposed to an earlier view in which

a program was essentially a list of instructions to the
computer. Each object can receive messages, process
data, and send messages to other objects. Messages
can be handled by one or more pieces of code, and
programmers can create relationships between one
object and another so that objects can inherit
characteristics from other objects. For example, a
system requirements engineer might specify a bank
account with the associated functions of depositing,
withdrawing, and providing a balance. A system
designer would describe an object “bank account,”
which the programmer would implement in code.
Object-oriented programming made it easier to create
and extend complex applications such as graphical
user interfaces (GUIs), operating systems, and
distributed applications (for example, browsers that run
on more than one computer and communicate through
a network).

Programmers were also increasingly using modules, or
components that could be connected to each other.
Modularity enables programmers to replace or add a
component without affecting the rest of the system.
With component-based software, programmers could
develop custom applications without concerning
themselves with the details of implementation because
those details were hidden. However, hiding
implementation code also hid inherent problems, which
meant that resolving these problems was difficult to
impossible, resulting in slow and inefficient systems.

Gregor Kiczales, a computer scientist at the Xerox Palo
Alto Research Center (PARC), wrote that conventional
computer-industry wisdom considered it “essentially
impossible for code to be both high-level and efficient,
except in very specific cases that usually involve
removing any hope of reusability. The programming
world is thus divided into two basic camps, one that
espouses elegant high-level code and the other that
promotes inelegant but highly efficient code.”

Xerox Corporation produces copiers, printers, image-
processing systems, and desktop publishing systems
that all contain computers. Xerox was interested in
developing more powerful products that could be
tailored to its customers’ individual needs. Because that
step was impossible without reusable code, the
company turned to PARC. Since its founding in 1970,
PARC had invented object-oriented programming and

many of the technologies and products now considered
standard in computing: personal computers, what-you-
see-is-what-you-get (WYSIWYG) monitor display,
graphical user interfaces, Ethernet networks, the
mouse, and the laser printer.

Programming Languages Could Not Produce
Reusable Components

There had been previous experiments in producing
reusable components. For example, researchers in
Japan had developed programming languages and
operating systems that allowed programmers to control
the behavior and location of objects, but these projects’
output had not been commercialized. Researchers in
France had developed control over some issues in
implementing networks, but only for one highly specific
use.

Separating concerns such as error-checking and
handling, synchronization, and performance

would improve the speed, quality,
and flexibility of core code.

PARC contended that the programming then in
existence could not produce software components that
were compatible with other components; that is, they
were not “plug and play” components. PARC
hypothesized that the fundamental problem was the
hidden implementation and layers of abstraction. PARC
wanted to prove this through prototype applications;
beyond that, it wanted to develop general principles and
techniques for industry programmers. In addition, PARC
wanted to achieve separation not just between
functionality and implementation, but also among a
number of different implementation issues.

Because the proposed prototype, principles, and
techniques were radical and high risk, PARC applied for
ATP funding in 1994 under the focused program,
“Component-Based Software.” With a larger staff made
possible by the two-year award, they proposed to
develop a semantic framework that describes a
component’s function and a separate implementation
framework that prescribes how to put the component
into use. The PARC team intended to articulate the
principles of separation of implementation and then
develop technological applications if experiments
showed the principles to be sound.

Research and Business Outlooks Were Clouded

When the ATP-funded project began in January 1995,
PARC faced skepticism in the research community,
which predicted that the proposed solution would make
code and systems less modular or flexible. There was
no mechanism to open up a module to expose internal
structure. It was thought that the inside of a module had
to remain completely hidden for systems to be stable,
robust, and flexible.

In addition, the outlook for commercialization was
problematic. It was felt that the business community
would be reluctant to train its programmers in a new
type of programming unless there was a clear financial
advantage to retraining employees, shutting down
systems, and experiencing other downtime that comes
with changing software. Conventional wisdom held that
retraining an experienced programmer in object-
oriented techniques required 6 to 18 months before that
programmer was fully productive.

The PARC researchers assumed that the major
problem in developing reusable components occurred
when a programmer wanted to reuse some or all of the
semantic code, but not necessarily all of the
implementing code. As research under the ATP award
began, they scaled up the project, centering their
research on two customized prototypes. The prototypes
included languages that application experts could use
to define specific applications in specific areas: an
image-understanding language for certain kinds of
image-processing applications and a sparse matrix
language for computations common to forms of
scientific and numerical computing.

About halfway through the project, the researchers
realized that separating semantic code from
implementing code would not solve the problem they
had set out to solve. They developed a new hypothesis
based on their understanding that many of the objects
were implemented in similar or duplicated code and
decided to explore the difference between core
concerns and cross-cutting concerns. A concern is any
problem that a program tries to solve. Programs
address core concerns (such as credit card billing, or
sending email). Cross-cutting concerns do not relate to
core concerns directly, but a program cannot be
executed without addressing cross-cutting concerns.
Often when programmers changed a feature of a cross-

cutting concern, they had to recompile source files and
check code for consistency. The team began to isolate
the cross-cutting concerns, such as error-checking and
handling, synchronization, and performance
optimization. Separating these concerns, or aspects,
the team hypothesized, would improve the speed,
quality, and flexibility of core code.

Aspect-Oriented Programming Is Born

The team filed two patent applications related to sparse
matrix code in 1995. Sparse matrix code enabled users
to write high-level code and annotate it to make
implementation more efficient. As a result, reusable
components could match the speed of customized
applications and were shorter and less complex.

In 1996, the PARC team sponsored a conference,
Reflection ’96, to present their findings, which they
called Open Implementation Analysis and Design
methodology. They next presented their findings at
several international conferences. At this point, the
PARC researchers realized that further development
would take more time and resources than could be
funded by the ATP award. Therefore, although the ATP
project was funded through December 1997, in 1996
the team submitted a proposal to the Defense
Advanced Research Projects Agency (DARPA) for
assistance to continue work after the ATP-funded
project ended.

Although others had been doing research in the same
general area, the PARC team was recognized as the
first to articulate the technology, which they named
aspect-oriented programming (AOP). Just as object-
oriented programming added to the programming that
preceded it, AOP added to object-oriented
programming rather than replacing it.

Over the course of the ATP-funded project, interns from
Northeastern University, the University of Washington,
Indiana University, and Massachusetts Institute of
Technology tested ways to use AOP and developed
best practices and guidelines. In August 1996, the
PARC team reported that they had introduced AOP to
the research community and were promoting it through
papers, workshops, and presentations. They filed
another patent application related to a high-level
language for AOP in late 1996.

Towards the end of the ATP-funded project,
researchers started designing a general-purpose tool
that they named AspectJ. This tool enables
programmers to define features that reflect crosscutting
concerns (such as security or dependability) needed for
a system and, through a compiler, to place those
features throughout the code. Through an alliance with
PARC, the University of British Columbia systematically
evaluated AspectJ in use beginning in the summer of
1997. In August 1997, PARC signed a contract with
DARPA as a result of its proposal a year earlier, for a
$1.3 million, three-year project. The project would
explore whether AOP was suitable for use in a
decentralized system so that end users could analyze
and distribute information if part of the system were
destroyed or if it could be used in smart-matter
applications, which enable systems to adapt
immediately and autonomously to changes in their
environment. During this DARPA-sponsored follow-on
research, PARC further developed AspectJ and readied
it for dissemination.

Knowledge of AOP Spreads

The University of British Columbia evaluators and other
users found AspectJ to be simple and straightforward.
Components could be plugged into a software program,
greatly reducing the cost and time of installation. PARC
researchers were careful to create a product with a 15-
minute adoption profile; that is, one that a programmer
could very quickly learn alone, without further training.
This profile assuaged businesses’ qualms that adopting
AOP would result in significant downtime.

Aspect oriented programming’s modularity can
help mass-merchandise web sites deliver faster,
more reliable service, at a lower cost, and with

greater customization.

The team benefited greatly from Sun Microsystems’
introduction of Java in 1994 and its nearly instant
success. Java was designed as an object-oriented
programming language, using small programs
downloaded from the World Wide Web to write Internet-
based material that incorporated animation, sound
effects, calculators, and other special effects. Java
accelerated the expansion of the Internet into a flexible
method of communication. AOP complemented Java,

because it allowed programmers to improve productivity
and quality immediately. As software becomes more
complex, AspectJ allows programmers to recompose
large and complex software into simpler, better
targeted, higher quality products.

PARC released AspectJ to the public in 1998. Since
then, “it has been available for downloading from the
Internet and has been used by thousands of software
developers. The only competing technology is manually
installing components in a program. The costs of doing
this are so prohibitive that it is not often done,”
according to Benefits and Costs of ATP Investments in
Component-Based Software (NIST Report GCR 02-
834).

By the end of 1999, PARC had applied for five more
patents, including one for AOP. By 2001, AOP was
becoming more widely known in the industry. The
Association for Computing Machinery wrote that AOP
“promises simpler system evolution, more
comprehensible systems, adaptability, and easier
reuse.” AOP makes the aspect code and the target
application programming easier to understand, which is
especially important as software becomes more
complex and as programmers are unlikely to be familiar
with the intricacies of specialized algorithms.

To win broad acceptance for the new technology,
PARC opted to retain the patents but make the
technology open-source. In December 2002, PARC
transferred AspectJ to eclipse.org, an open-source
project under the sponsorship of IBM. Since then,
AspectJ has become part of Java and IBM’s
WebSphere Suite. In June 2003, AspectJ won the
JavaWorld Editors’ Choice Award for the Most
Innovative Product or Technology using Java.

According to IBM computer scientist Adrian Colyer,
quality of service and serviceability were originally
bundled on the Websphere platform. AspectJ allowed
IBM’s programmers to make quality of service and
serviceability into modules that IBM can sell separately.
Several of IBM’s product teams incorporate AOP in
their projects. In addition to developing a more modular
and flexible code, some teams use aspects to enable
replacement of policies (such as access or security
policies) on a per-customer or per-environment basis,
something that was not possible before.

In 2003, IBM started the AspectJ Development Tools
(AJDT) project to provide support for developing
AspectJ applications in eclipse.org’s development
environment. AJDT provides the tools needed to make
day-to-day development with AspectJ practical for IBM
development teams, as well as for developers outside
IBM. AJDT has also been integrated into IBM's Rational
Software Development Platform tools based on eclipse.
AJDT is a separately downloaded application that can
be added onto the products rather than being included
in the product itself. According to Colyer, this enables
both IBM and its customers to use AspectJ for
enterprise application development.

IBM also uses AOP to split off the best components
from its middleware (software that intermediates
between two or more applications) and put them
together in new ways to create more modular and
flexible solutions. Typically, product teams working in
this way can use common components across many
environments, where previously some duplication would
have been required. This ability saves several person-
months of development time.

In March 2004, IBM Vice President for Software Group
Strategy and Development Daniel Sabbah said, “AOP
will simplify the delivery and service of high-quality
software, deliver new solutions for our customers’
development requirements, create opportunities for
customers to add value to their software, and
accelerate new initiatives at the heart of IBM’s software
strategy.”

ATP Award Crucial to Project’s Success

AspectJ is entering the mainstream of programming
tools, although exact figures on usage are hard to
determine because users do not have to buy the
application. Six books have been published specifically
about AspectJ, including Japanese and Spanish
versions. AOP and AspectJ have been cited in more
than 3,000 articles, papers, or presentations. PARC
team leader Gregor Kiczales estimates AspectJ has
between 5,000 and 10,000 users and says that AspectJ
is growing as fast as it possibly can.

AOP is taught in 15 to 20 North American and United
Kingdom universities. Former PARC team member
Cristina Lopes continues her research in AOP as a
professor at the University of California at Irvine. Xerox

has patented the project’s two prototypes along with
AspectJ. The PARC team members have made
numerous presentations, and PARC launched an
AspectJ web page.

Although AspectJ was not commercialized because it is
offered as a free download from the Internet, it is widely
used as a tool in revenue-generating business
applications. The interest in and adoption of AOP and
AspectJ continues to expand both within IBM and
externally, according to Colyer. Opportunities to exploit
AspectJ appear and new project teams form at IBM
every month.

None of this would have happened without ATP
funding, according to Kiczales. Even within PARC, the
idea was radical, so that receiving ATP funding was the
difference between going ahead or canceling the
research. In addition, PARC’s relationship with ATP
forced the research team to think early on how their
research might lead to commercialization. Although
none of the originally envisioned products were
developed, ATP encouraged the team to think about the
commercial problems that an advanced technology
would solve, which for many software researchers was
an unheard-of approach. That perspective led the team
to re-target the work to the Java platform and AspectJ
in the late stages of ATP funding.

As of 2004, AOP had experienced one of the fastest
paths in the software industry from research to
implementation; furthermore, it appeared to be slowly
changing the nature of component-based software. It is
recognized that computer companies can make money
in the short run by selling specific components and that
tools and infrastructure needed for a full-scale market
take longer to reach profitability. Because of this, in
Kiczales’s view, the private sector often lags in
developing such tools and infrastructure. ATP funding,
according to Kiczales, “encourages companies to focus
on the longer term technologies such as AOP that are
needed for a mature, component-based software
market.”

“We are in the early stages of understanding the full
potential of Aspect Oriented Software Development,”
wrote Gary Pollice, of Worcester Polytechnic Institute,
in 2004. “Aspect-oriented technology might allow us to
do a better job of maintaining systems as they evolve.
AOP would let us add new features, in the form of

concerns, to existing systems in an organized manner.
The improvements in expressiveness and structure
might allow us to keep systems running longer, and to
incrementally improve them without incurring the
expense of a complete rewrite. Using an AOP
language, we might be able to test application code
automatically without disturbing the code. This would
eliminate a possible source of error.”

Kiczales compares the benefits of AOP to those of Intel
Inside. The average computer user does not
understand or care about Intel’s microprocessors or
about aspects, but both technologies make applications
work faster and more smoothly. AOP’s modularity can
help mass-merchandise web sites deliver faster, more
reliable service, at a lower cost, and with greater
customization.

Conclusion

As computer software grows more complex,
programming becomes more difficult and the code
produced by the programming is often unwieldy.
However, the end users continue to seek higher
productivity and flexibility; ultimately, they want to be
able to reuse expensive software. Researchers at the
Xerox Palo Alto Research Center (PARC) were looking
at ways to address these concerns. They applied for
and won an ATP award under the “Component-Based
Software” focused program that allowed them to pursue
their research on reusable software components with a
larger team. In 1995, the PARC team looked at ways of
separating the implementing code from the core source
code. After two experiments, they modified their
hypothesis to extract crosscutting concerns, or aspects,
and write code to make these aspects into separate
modules. This led them to formulate a new paradigm for
computer software engineering, called aspect-oriented
programming (AOP). In follow-on research sponsored
by the Defense Advanced Research Projects Agency,
the PARC team developed a highly successful product,
AspectJ, which they transferred to IBM’s eclipse.org, an
open-source project. AspectJ is now part of the Java
software platform and can be downloaded from
eclipse.org. IBM is using AspectJ and AOP in its
product development.

The effects of this new way of programming are just
beginning to be realized. The technology has won one
award and has been described in 6 books, dozens of

presentations, and more than 3,000 articles.
Universities in the United States, Canada, and the
United Kingdom are teaching courses in AOP, and the
computer industry is beginning to use it to develop new
software. IBM, in particular, has expressed confidence
that AOP will both simplify and improve high-quality
software. The outlook for this technology is strong.

PROJECT HIGHLIGHTS

Xerox Corporation Palo Alto Research Center

Project Title: Improving Software Efficiency

Through Reusable Components (Reusable
Performance-Critical Software Using Separation of
Implementation Issues)

Project: To develop a component software technology

that separates the semantic details of a component from
the implementation details in order to support the use of
software components and automated software
composition for high-performance applications.

Duration: 1/1/1995-12/31/1997
ATP Number: 94-06-0036

Funding** (in thousands):

ATP Final Cost $1,670 57%
Participant Final Cost 1, 275 43%
Total $2,945

Accomplishments: With ATP funding, the Xerox

Palo Alto Research Center (PARC) accomplished the
following:

• Developed a new programming technique called
aspect-oriented programming (AOP)

• Developed two prototype applications of
specialized computer languages

• Developed AspectJ, an open-source language that
extends Java; it is being further developed and
used in IBM’s software applications and by many
others

In June 2003, AspectJ won the JavaWorld Editors’
Choice Award for the Most Innovative Product or
Technology Using Java.

PARC received the following patents for technologies
resulting from the ATP project:

• “Tools for efficient sparse matrix computation”
(No. 5,781,779: filed December 18, 1995; granted
July 14, 1998)

• “Ordered sparse accumulator and its use in
efficient sparse matrix computation”
(No. 5,983,230: filed December 18, 1995; granted
November 9, 1999)

• “High-level loop fusion”
(No. 5,822,593: filed December 6, 1996; granted
October 13, 1998)

• “Software constructs that facilitate partial evaluation of
source code”
(No. 6,199,201: filed August 3, 1998; granted March 6,
2001)

• “Aspect-oriented programming”
(No. 6,467,086: filed July 20, 1999; granted October 15,
2002)

• “Aspect-oriented system monitoring and tracing”
(No. 6,473,895: filed July 20, 1999; granted October 29,
2002)

• “Integrated development environment for aspect-
oriented programming”
(No. 6,539,390: filed July 20, 1999; granted March 25,
2003)

• “Software constructs that facilitate partial evaluation of
source code”
(No 6,631,517: filed November 2, 2000; granted October
7, 2003)

Commercialization Status: The ATP funded

AspectJ is now used in a significant percentage of IBM’s new
products and is an open-source platform. PARC transferred
AspectJ to the open-source eclipse.org project in December
2002.

Outlook: The outlook for AOP is strong. As universities

include it in their curricula, more computer scientists will gain
proficiency and will find ways to use it in designing programs.
IBM is aware of its utility and uses it in the majority of its new
software products; other software developers are likely to
follow suit. AspectJ has also been designed to conform to the
“15-minute rule”: software engineers can download it and
become productive within 15 minutes.

Composite Performance Score: * * * *

Focused Program: Component-Based Software, 1994

Company:
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Contact: Eric Steffensen
Phone: (415) 812-4073

 ** As of December 9, 1997, large single applicant firms are required to pay 60% of all ATP projec costs. t
 Prior to this date, single applicant firms, regardless of size, were required to pay indirect costs.

PROJECT HIGHLIGHTS

Xerox Corporation Palo Alto Research Center

Publications: Of the 6 books and more than 3,250

articles on AspectJ or AOP, the following is a sample:

• Kiczales, Gregor. “Beyond the Black Box: Open
Implementation.” IEEE Software, 13(1), January
1996: 8-11.

• Kiczales, Gregor. “Aspect-Oriented Programming.”
ACM (Association for Computing Machinery)
Computing Surveys 28(4es), December 1996: 154.

• Coady, Yvonne, Gregor Kiczales, Michael J.
Feeley, Norman C. Hutchinson, Joon Suan Ong.
“Structuring operating system aspects.”
Communications of the ACM, 44(10), October 2001:
79-82.

• Kiczales, Gregor, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold.
“Getting started with ASPECTJ.” Communications
of the ACM, 44(10), October 2001: 59-65.

• Elrad, Tzilla, Mehmet Aksit, Gregor Kiczales, Karl J.
Lieberherr, and Harold Ossher. “Discussing aspects
of AOP.” Communications of the ACM, 44(10),
October 2001: 33-38.

• Wand, Mitchell, Gregor Kiczales, and Christopher
Dutchyn. “A semantics for advice and dynamic join
points in aspect-oriented programming.” ACM
Transactions on Programming Languages and
Systems (TOPLAS), 26 (5), September 2004: 890-
910.

Presentations: The following is a sample of the researchers’

presentations:

• Hannemann, Jan, and Gregor Kiczales. “Design
pattern implementation in Java and AspectJ.”
Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA
2002, November 4-8, 2002, Seattle, Washington,
New York: ACM Press, 2002: 161-173.

• Kiczales, Gregor. “AspectJ: Aspect-Oriented
Programming in Java.” Objects, Components,
Architectures, Services, and Applications for a
Networked World, International Conference
NetObjectDays, NODe 2002, Erfurt, Germany, October
7-10, 2002. Eds. Mehmet Aksit, Mira Mezini, and
Rainer Unland. Springer, 2003: 1.

• Devanbu, Premkumar T., Bob Balzer, Don S. Batory,
Gregor Kiczales, John Launchbury, David Lorge
Parnas, and Peri L. Tarr. “Modularity in the New
Millennium: A Panel Summary.” Proceedings of the
25th International Conference on Software
Engineering, May 3-10, 2003, Portland, Oregon, IEEE
Computer Society, 2003: 723-725.

• Masuhara, Hidehiko, and Gregor Kiczales. “Modeling
Crosscutting in Aspect-Oriented Mechanisms.”
ECOOP 2003 - Object-Oriented Programming, 17th
European Conference, Darmstadt, Germany, July 21-
25, 2003, Proceedings. Ed. Luca Cardelli. Springer,
2003: 2-28.

• Masuhara, Hidehiko, Gregor Kiczales, and Christopher
Dutchyn. “A Compilation and Optimization Model for
Aspect-Oriented Programs.” Compiler Construction,
12th International Conference, CC 2003, held as part
of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings. Ed. Gorel Hedin.
Springer, 2003: 46-60.

• Coady, Yvonne, and Gregor Kiczales. “Back to the
future: a retroactive study of aspect evolution in
operating system code.” Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, AOSD 2003, March 17-21, 2003,
Boston, Massachusetts. New York: ACM Press, 2003:
50-59.

Research and data for Status Report 94-06-0036 were collected during October – December 2004.

	INFORMATION TECHNOLOGY
	
	
	
	
	
	
	
	cutting concern, they had to recompile source files and check code for consistency. The team began to isolate the cross-cutting concerns, such as error-checking and handling, synchronization, and performance optimization. Separating these concerns, or as
	�

